OPERA neutrino experiment on breaking speed of light

Based on extensive feedback from the broader particle physics community on its neutrino time-of-flight measurements presented at CERN on September 23, the OPERA

Can neutrinos move faster than light?

If it's true, it will mark the biggest discovery in physics in the past half-century: Elusive, nearly massive subatomic particles called neutrinos appear to travel just faster than light, a team of physicists in Europe reports. If so, the observation would wreck Einstein's theory of special relativity, which demands that nothing can travel faster than light.

Researchers unravel the mystery of quantum dot blinking

(PhysOrg.com) -- Research by Los Alamos scientists published today in the journal Nature documents significant progress in understanding the phenomenon of quantum-dot blinking. Their findings should enhance the ability of biologists to track single particles, enable technologists to create novel light-emitting diodes and single-photon sources, and boost efforts of energy researchers to develop new types of highly efficient solar cells.

Research sparks record-breaking solar cell performances

(PhysOrg.com) -- Theoretical research by scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has led to record-breaking sunlight-to-electricity conversion efficiencies in solar cells. The researchers showed that, contrary to conventional scientific wisdom, the key to boosting solar cell efficiency is not absorbing more photons but emitting more photons.

New process for manufacturing nanocellulose: using nanocellulose to create novel composite materials

For some time now nanocellulose has been at the focus of a good deal of industrial and scientific interest as a novel biomaterial. Potential applications range from the creation of new kinds of commercially useful materials and uses in medical technology all the way to the food and pharmaceutical industries. Swiss researchers have now developed a manufacturing process for nanocellulose powder, the raw material for creating polymer composites which can be used, for example, in lightweight structures for the car industry or as membrane and filter material for biomedicinal applications.

Scientists take fresh look at 'faster-than-light' experiment

Scientists who threw down the gauntlet to physics by reporting particles that broke the Universe

New method of growing high-quality graphene promising for next-gen technology

Making waves as the material that will revolutionize electronics, graphene -- composed of a single layer of carbon atoms -- has nonetheless been challenging to produce in a way that will be practical for innovative electronics applications. Researchers have discovered a method to synthesize high quality graphene in a controlled manner that may pave the way for next-generation electronics application.

Physicists turn liquid into solid using an electric field

Physicists have predicted that under the influence of sufficiently high electric fields, liquid droplets of certain materials will undergo solidification, forming crystallites at temperature and pressure conditions that correspond to liquid droplets at field-free conditions. This electric-field-induced phase transformation is termed electrocrystallization.

Time reversal: A simple particle could reveal new physics

(PhysOrg.com) -- A simple atomic nucleus could reveal properties associated with the mysterious phenomenon known as time reversal and lead to an explanation for one of the greatest mysteries of physics: the imbalance of matter and antimatter in the universe.

China prepares to launch first space lab module this week

China in testing its first space laboratory module, the Tiangong-1, at the end of this week. The module will conduct docking experiments after entering

Cloaking magnetic fields -- the first antimagnet

Spanish researchers have designed what they believe to be a new type of magnetic cloak, which shields objects from external magnetic fields, while at the same time preventing any magnetic internal fields from leaking outside, making the cloak undetectable.

Antimatter sticks around

By successfully confining atoms of antihydrogen for an unprecedented 1,000 seconds, an international team of researchers called the ALPHA Collaboration has taken a step towards resolving one of the grand challenges of modern physics: explaining why the Universe is made almost entirely of matter, when matter and antimatter are symmetric, with identical mass, spin and other properties. The achievement is remarkable because antimatter instantly disappears on contact with regular matter such that confining antimatter requires the use of exotic technology.